少女祈祷中...

形缺数时难入微,数缺形时少直观.

本文是对抛物线的一些简单性质的整理与证明

焦点弦的性质及证明

交于两点A,B A(x1,y1),B(x2,y2)

y2=2pxx1x2=p24y1y2=p2y^{2} =2px \\ x_{1} x_{2}=\frac{p^{2} }{4} \\ y_{1} y_{2}=-p^{2}

证明


x=ty+p2x=ty+\frac{p}{2}

联立方程:

{y2=2pxx=ty+q2\left\{ \begin{array}{l} y^{2} = 2px \\ x = ty + \frac{q}{2} \end{array} \right.

求解:

y2=2p(ty+p2)=2pty+p2y^{2}=2p(ty+\frac{p}{2})=2pty+p^{2}

整理得:

y22ptyp2=0y^{2}-2pty-p^{2}=0

由韦达定理可知:

y1y2=ca=p21=p2y_{1}y_{2}=\frac{c}{a}=\frac{-p^{2}}{1}=-p^{2}

同理,如果我们设

y=k(xp2)y=k(x-\frac{p}{2})

联立求解可得

x1x2=p24x_{1}x_{2}=\frac{p^{2}}{4}

Powered By Valine
v1.5.1